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We use energy methods to study global exis ence, Doundedness, and asymptotic

behavior as t -
~~ ~~, of solutions of the two Cauchy problems (and related

initial-boundary value problems)

(u
~~
(t,x) = f a(t — T)o(u (r,x))dT + f(t,x) (0 < t < ~~~, x e F)

(HF ) 0 
X

( u(0,x) = u
0
(x) (x € F)

(u
~~~

(ttx) = a(u (t,x)) + f a’(t — T)a(u (T ,x))dr + g(t,x)

I 0
(yE) ( 0 <  t < = , x €  IR)

L u (O,x) = u
0
(x), u

~
(Osx) = u

1
(x) (x e F)

with suitably “ small” data u
0

, u
1
, f, g; (HF) and (yE) are mathematical models

for nonlinear one—dimensional heat flow in a material with “memory” and non-
linear one—dimensional viscoelastic motion,respectively. Here a : (0 ,ae) -

~ F,
a : F -

~ F, f,g : [0,co) x F -. F, u
0
,u
1 

: F -
~ F are given, sufficiently

smooth functions; the subscripts x or t denote partial derivatives. If
a(0) = I formal differentiation with respect to t reduces (HF) to (VE) with
g(t,x) = f

t
(t
~
x) and u

1
(x) = f(0,x). But, since (HF) and (yE) have different

physical origins, the corresponding natural assumptions concerning a(•) are
drastically different and, therefore, the two problems are studied separately.

A previous study of (HF) and (yE) rests on the concept of Riemann invariant
and is restricted to one space dimension. The energy method is simpler in
principle and yields more widely applicable results.
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SIGNIFICANCE AND EXPLANATION

This paper is devoted to a study of the two initial value problems (and
some closely related boundary-initial value problems);

t
• (u t (t ,x) = f aCt  — T)o(u (T ,x) ) dr + f ( t ,x )  (0 < t < ~~, x € F)

(HF)~~ 
0 x x

L. u(O,x) = u
0
(x) Cx € F)

1utt
(t t

~~ 
= a(u

~
(t.x))

~ 
+ f a’(t — T)a(u (r,x))dT + g(t,x)

(VE )~~ ( 0 <  t < ~~~, x €  F)

L u (O ,x) = u0 (x) , ut (O #x ) = u1(x) (x € F)

for suitably “small” data u
0
, u1

, f , g. Here a : [0 , ’o) -
~ F, a : JR -~ F,

f,g : [ O, ) x JR -
~ 

p, u
0
,u
1 
: F -

~ F are given real functions, and a ’ =

(HF) and (yE) are mathematical models for nonlinear heat flow in a material with
memory and for nonlinear viscoelastic motion respectively. If a(0) = 1 formal
differentiation of (HF) with respect to t reduces (HF) to (VE) with
g( t ,x) = f (t ,x ) ,  u1(x) f(0,x). However, the different physical origins of
the two pro~b1ems , imply drastically different  assumptions on the kernel a(•)
for each, and therefore, the two problems are studied separately .

Problems (HF) and (yE ) cannot in general be solved explicitly, even in the
linear case a (r )  = c2r , c a constant; here the main interest is in more
complicated nonlinear problems, e.g. 0(r) = c2r + r 2 , since these provide more
accurate mathematical models of physical situations. To suggest some of the
difficulties consider the case a(t) E 1 for which both (HF) and (yE) reduce to
a nonlinear undamped wave equation (W) ~~~ = o(u ) + g. It is known that (W),
with the forcing term g E 0, has the property ti%a~ its solutions d ’velop
singularities in the first derivatives at some finite time t, no matter how
smooth one takes the initial data; such solutions are called “shocks”. Therefore,

• the initial value problem for (W) does not in general possess global, smooth
solutions in time .

We use ensrgy methods to establish the global existence, uniqueness, bounded-
• ness , and the decay as t -

~~ ~ of smooth solutions of (HF ) and (VE) , under
physica l reasonable assumptions concerning the “memory function” a ( ) ,  for
smooth and suitably “small” da ta . One interpretation of our global existence
results is that the presence of the integrals in (HF) and (VE ) provides a damping
mechanism which precludes the develo~*nent of “shocks”. The boundedness and decay
results are relatively easy by products of the global existence results.

Due to the complexity of the equat ions under study any method of analysis
will necessarily be quite technical. However, the energy method developed in
this paper is simple, at least in principle, and it yields more general results
for (HF) and (VE) than were obtained in a previous study by the method of
Riemann invariants. For this reason our approach is not restricted to one space
dimension, as we illustrate by outlining a two—dimensional version of (HF).

The responsibility for the wording and views expressed in this descriptive
susmary lies with M~~ , and not with the authors of this r eport.
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1. Introduction. In this paper we use energy methods to study global existence, bounded —

ness , and asymptotic behavior , as t • , of Solutions of two initial value problems:

(ut
(t,x) a(t - T ) O ( U  ( T , x) ) di + f(t,x). 0 t < ~~ . x E  R

(HF ) 0

L u(O,x) = u0(x), x E P

(utt(t.x) 
= O(u (t , x ) )  + f a ’( t — r ) O ( u  (r ,x ) )  dt + g(t.x), 0 < t ~ , x c  P

(yE )

u(O,x) = u
0
(x), u

~
(O .x) u1(x). X E  P

with suitably “small” data . Here a : (O, o.~) -
~ R , o : P + R, f,g : IO .o )  X P -

~ P .

R P are given functions ; subscripts x or t denote corresponding par t ia l

derivatives; a prime ( ‘)  denotes the derivative of functions of a single variable .

Problem (HF) represents a mathematical model for heat flow in unbou nd ed one-

dimensional bodies of material with memory whi le  (yE) is a model for the equation of

• 
motion of an unbounded one—dimensional nonlinear viscoelastic body . The corresponding

initial-boundary value problems for bounded bodies have been studied by MacCamy (7 1.

(8); we also refer to (7), 18) for a sketch of the derivation of the equations from

physical principles . Here we are dealing primarily with the initial value problem but

in Section 6 we show that our methods apply equally well to certain initial—bo undary

value probl~~ls.

About a(.) we make the assumptions

(a) o E C3(R), o (0) 0, a ’(O) ~ 0

the first for technical reasons and the other two on physical grounds ( i n  the l i n e a r

Sponsored by;
( 1) The United States Army under Contract No. DAAG29-75-C- O( 124;
(2 ) Brown University , Providence, RI ;
(3) Th. University of Wisconsin Graduate School . Project No. 180833; and
(4) Ths United states Army und er Grant No. DUG29—77—G—0004 . ‘ . 
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versions of (HF) and (yE ) 0(u ) = u). Concerning the forcing termS we assume

~ L
2(t0 .”); I.

2(R))

(g) 
~~~~~ 

E L11(0,’”); L
2(R)). 

~~~~~~~~~ 
E L2(f0,°); L2(R))

meaning that f, g and their (distributional) derivatives are endowed with some smooth-

ness and decay sufficiently rapidly at infinity . The initial datum u0
(x) in both (HF)

and (yE ) will be assumed to satisfy

2(ii ) u .u ,u c L (R)0 Ox Oxx Oxxx

while u1(x) in (yE ) will satisfy

(u1
) u

1
,u

1
,u~ c L

2(R)

We shall postpone to Section 2 the precise assumptions on the kernels a(t). For the

moment it suffices to know that a(t: is C3 smooth and, without loss of generality ,

a(O) = 1.

Formal differentiation of (HF) with respect to t reduces this problem to (yE)

with g(t.x) f
t{t.

x) and u1
(x) = f(O.x). However , since (HF) and (yE) have different

physical origins, the corresponding natural assumptions on a(•) are drastically

different (see Section 2) and as a result the above problems have to be studied separately.

If a(t) = 1, t E (O,~ ), both (HF) and (yE ) reduce to a nonlinear undampmi wave

equation 
~~~ 

= c7(u )
~ 

+ g. For the latter (take g E 0) it is known (41 that

the initial value problem does not generally have global smooth solutions, no matter

how smooth the initial data are. However , for the wave equation with “frictional”

damping, ~~~ + ut 
= 0(u ) . NiShida Ill) shows that when the initial data are “small”,

the dissipation precludes the develo~inent of shocks, and as a result global smooth

solutions to the initial value problem exist. The proof rests heavily on the concept

of Rimnann invariants and is strictly “one—space—dimensional” . In the aforementioned

t papers 17). Fe). MacCamy shows that, under natural assumptions on the kernels a(t), S

the memory terms in (HF) and (VE) induce dissipative mechanisms that guarantee the
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.xiat.nc. of global smooth solutions when the initial  data and the forcing term are

smaU” . The proof combines cer tain energy integrals with Nishida ’s Riemann invariant s

argument and consequently is “one-space-dimens ional” . For correction s of cer tain

ai.prints and oversights in (7 1 • [81 see Section 2. The question of obtaining the

existence and uniqueness of a suitable local solution for (HF) and (yE) , to be continued

with the aid of a priori estimates, is not discussed in 171, (81 . but this gap can be

filled by the method outlined in Nohel (12 1 . For the multi—space—dimensional nonlinear

wave equation with frictional damping and “small” data Matsumura 191 . (10) establishes

the existence of globa l smooth solutions by a method that is based exclusively on

“energy” estimates. (We are grateful to Professor Nishida for explaining this method

to us.) The object of this paper is to study (HP ) and (VE ) by a similar approach . We

are restricting our attention to the one-space—dimensional situation for clarity - the

method seems to work in any number of space dimensions, a two-dimensional version of

(HF ) is discussed briefly in Section 7.

Our procedure can be outlined as follows : In Section 2 we reduce , similar to

17 1, (8 1, both (HF) and (yE ) to the equivalent form

( u~~~(t ,x) + k ( t  — r)u
t
(T,x)dr — o(u

~
(t
~
x))

~ 
+ •(t ,x ) , 0 <  t < =, X e  P

(1.1)

L u (O, x) — u
0

(X) , u
~

(O .x) — u1 (x), X e  P

where k ( t )  is the r esolvent kernel associated with a ’ ( t) (see Section 2) and •(t ,x) ,

determined by k(t) and f( t , x )  or g(t , x) ,  satisfies

( )  
~~~~~~~~~~~~~~ 

I L ((O, )t L (R) )

for problem (HF), and some additional conditions for (VE ) (see conditions 
~~~~~~~~ 

section 2).

In Section 3 we prove with the help of the Banach fixed point theorem an existence and

• uni queness theorem of a local solution to (1.1) that applies both to (HF) and (yE) . In

Sections 4 and 5 we •stablish for (HF ) and (yE),  respectively . “energy ” estimates tha t

allow the extension of the loca l solution, constructed in Section 3, into a globa l

solution. These •stiaates have the form

—3—
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t t t
(1.2) E(t) — E’(O) — I I Q (u,u)dxd l + f I P (u,uldxd r + f f l i[u , 4 Jdxd r

0 -~~ 0 —
~~ 0 —~~

where g (t )  is an “energy ” that cont rols the growth of t h -  so lution;  c~[u, u 1 .  the

dissipation term induced by the memory term, is a positive definite quadratic form

in a set of derivatives of u(t,x); PIu,u l , the remai nder term due to the nonlinearity

of the problem, is a quadratic form in the same derivatives as QIu ,u] and with

coefficients that are small whenever the “ energy ” E is small;  f in a l l y ,  ii(u,H is a

bilinear form in the set of derivatives of u(t,x) involved in ç[u,u) and in ~ (t ,x)

and some of its derivatives . The idea now is that for as ~onq as E(t) is small.

P(u,ul is dominated by —Q (u,ul . Moreover , the Cauchy-Schwarz inequality allows us

to dominate the u-part in f l I u , $) by —Q [u,ul . Then, if ~ (O) and ~ are “small” ,

• (1.2) shows that ~(t) remains small and the cycle closes.

Finally, we note that both problems (HF) and WE) are of the abstract form

t( u”(t) + a(O)Au (t) + f a ’( t  — T ) A U ( T ) d T  = F(t), 0 < t <

(A) 0

L u(O) = u
0
, u ’ ( O ) = U

1

where A is a nonlinear maximal monotone operator in a Hu bert space H, F(t) takes

values in H while u(t) takes values in a reflexive Banach space H dense in H.

The global existence problem for (A) was extensively stud ied by S. 0. Londen (5), [6)

for a class of kernels a (S) which are positive, smooth, decreasing , convex on 10 ,”)

and which satisfy the crucial condition a ’(O+) = —“ . Unfortunately, this last condition

is not satisfied by most memory functionals arising in heat flow theory or in visco—

elasticity .

—4—
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2. Properties of Resolvent Kernels and Transformation of Problems (HF) and (yE ). We

• f irst show how (HF) and (yE ) can be brought to the form (1. 1).  We define the resolvent

kernel k ( )  associated with a ’ ( ‘)  via the equation

(k) k ( t) + (a’*k) (t) —a ’(t) , 0 < t <

where, throughout, the * will denote the convolution, i . e . ,

t
(a ’*k) (t ) = f a ’(t  —

0

By standard Volterra equations theory, if a c C3 smooth , k ( )  is uni quely defined

and is C2 smooth on (0,”) (see , e.g., Bellman and Cooke (2 , Thm . 7.4)). MoreoVer,

for any p e L~~~(O,”), the unique solution of the Volterra equation

(2.1) y ( t )  + (a ’*y) (t) ~ (t), 0 < t < “

is given by

(2.2)  y ( t )  = ~~( t) + (k*~p ) ( t ) .  0 < t <

We now visualize the equation in (yE ) as a Volterra equation of the form (2.1)

with y — 
~

(u
~

) so that (2.2)  yields

(2.3) u
~t

(t .x ) + (k*u tt
) (t , x) “ a(u (t ,x ) ) -I- g(t,x) + (k *g ) ( t , x )

An integration by parts with respect to t in the convolution term on the left-hand

side of (2 .3 )  shows that (yE) is equivalent to (1.1) with

•(t , x) g (t , x)  + (k*g) (t,x) + k(t)u
1
(x)

Problem (HF ) is treated in a similar way . First we differentiate the equation in

(HF ) with respect to t thus bringing it to the form

u
~~~

(t .x) o ( u ) ( t, x) + (a ’*o (u )
~~

) ( t ,x)  + f
t (t.x)

then we use (2 .2)  to get

utt (t,x) + 
~~*u tt

) ( t .3t) — + ft(ti~~ 
+ (k*f )(t,x)

and, finally, we integrate by parts with respect to t in the convolution terms to

arr ive at (1.1) with

• 
~
2•4

~ H •(t , x )  . f t (t
~x) + k(O)f(t,x) + (k ’ . f ) ( t ,x) , 0 t ‘ “. x c  P

u1(x) — f(0,x) , X e  P

— 5—
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We note that, on account of assumptions (f), u1
(x), given by 12

~
5
~~

’ satisfies assump-

tion (u1
) .

We now state for each case, separately, the assumptions on the kernels a(’) and

we derive the induced properties of the associated resolvent kernels.

I. Heat Flow Equation

We assume

( i )  a ( t) e c3 (0 , ”) ,  a ( t) , a ’ (t ) , a ” ( t ) , a” (t) are bounded on (0, ”)

(ii) a(0) = 1, a’(O) < 0
( a )  ( j (m) 1H ( ii i)  t a Ct )  e L (0 ,”) ,  j 0, 1, 2 , 3, m = 0,1,2,3

L (iv) Re a(i~) > 0, n c R, where i(s) — f e
_St

a ( t )d t

We note that there is no loss of generality in assuming a(0)  = 1, prov ided aCO ) > 0 .

If a(O) * 1, equation (k) is modi fied to:

a(O)k(t) + (a’*k) (t) = — ~~~~~~~~~~

(2.2) and all subsequent equations involving k are not affected by this change in an

essential way. The following proposition summarizes properties of the resolvent kernel 
•

k(t) associated with a’(t).

Lemma 2.1. Assume that (a
s

) are satisfied and let k (t )  be the resolvent kernel

associated with a ’ (t ) . Then

(i) k(t) e C2[0,”); k(t).k’(t),k”(t) are bounded on [0,”).

(ii) k(t) k~ + K(t); k~ = > 0; K(m) (~) I L1(0,”), m 0,1,2.

(iii) For any T ‘ 0 there is a number a > 0 such that

~
2’6

~H 

T 
v(t) (k*v) (t)dt ~ a 

T 
v2(t)dt

for every v(t) C L2(0,T).

Assertion (iii) of Lemma 2.1 is the manifestation of the dissipative character

of the memory term and will play a central role in Section 4. For the (harmonic

analysis) proof of Lemma 2.1 we refer to 17, Lemma 3.1). We note that our assumptions

IT - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - L !~~~~:~~~~~~~ 
- • ~—•-iIi---
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(aM
) are weaker than the corresponding assum~tions 

~~~ 
in ( 7 ) ,  the reason being that

our method does not require that moments of K and K ’ be in L1 (O , ”) (see [7 ,

L~~~a 3.1, assertion (ii))). The reader of the proof of Lemma 3.1 in (7] should be

aware of the following misprints; Formula (3.5) should read

i(s) — — 
i(s) — ( 0 )  

—

sa (s)a(0) a(O)

Moreover , the assumption in (7 1 that a(t) I C2 (0, ”) is insufficient since it only

yields 0~.L) for the error term in [7 , eq. (3 .8))  rather than o(.4). as it is needed .

It is for this reason that we are assuming here a(t) e C3(O,— ) .  The proof of (iii)

can be accomplished more simply by the technique of (13, Theorem 1] than that of [7~,

the same comment applies to the proof of (2.11) below.

We note that assumption (f) together with k”(t)e L (O,—) and k’(t),k” (t) I

(Lemna 2.1) yield that •(t,x), as defined by 
~
2
~
4
~H

’ satisfies condition ($>

recorded in Section 1.

It. Viscoelasticity Equation

We make the following assumptions concerning the kernel a(t )  in (VE1 t

(i )  a (t )  C C3 (0, ”),  a ( t ) , a ’( t ) , a” ( t ) , a ” (t) are bounded on [0, ”)

J (ii) a C t )  — a + A (t), a~ > 0, a(0)  = 1
(av

) 

~ ( i i i )  ( l ) mA (m) 
(t) > 0, 0 < t < “, m — 0,1,2; A’ (t )  $ 0

(i v) ~
)A

(m) (~ ) C L1(0,”), j — 0,1, 2, 3, in — 0,1, 2,3

We note that (a.~)(iii) implies (aH)(iv) by a standard result 113, Cor. 2.21 . The

differenc e between and (au) that has a major effect on the properties of the

corresponding resolvent kernels is that in the former a () — 0 while in the latter

• a ( )  - a,,, > 0. In the place of Lmima 2.1 we now have

L~~~a 2.2. Assume that (a
~
) are satisfied and let k(t) be the resolvent kernel

associated with a ’ Ct) . Then

(L I k (t )  I C2 10 ,”); k (t ) ,k ’(t ) ,k ” ( t )  are bounded on (0,”).

(ii) k~
’
~~(t) C L’(O, m), in “ 0,1,2.

• 
(iii) For any T > 0 and every v( t )  I L2 (0,T) ,

v ( t >  (k *v ) ( t ) d t  ~ 0 . 7 
~J0

—7—
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• For a proof of Lemma 2.2 see [8, Lenlna 3.1).

We note that assumption (g) together with k”(t) f L (0. ) and

k(t),k’(t),k”(t) I L1(0,”) imply that D ( t , x ) ,  de f i ned by 
~
2 • 4

~V ’ sa t i s f ies

0’0~ C L1((0, ); L2(R)). ~~~~~~~~~ C L2 ( [ 0 , ”) ;  L 2 ( R ) )

namely conditions that imply (~~) of Section 1.

In contrast to 
~
2
~

6
~ H ’ ~

2
~

61 V only indicates a weak dissipative mechanism . Indeed ,

the dissipative mechanism for the viscoelasticity equation is quite subtle and it will

reveal itself through a device of MacCamy (8)  that involves s t i l l  another form of (Vt )

We define a function r : to.”) • ~ by

C r) r(t) 8 + k(t) + 8 k(i)dt

where 8 > 0 is a constant to be specified below and k(t) is the resolvent kernel

associated with a ’ Ct )  . It is easily verified tha t the solution y ( t )  of the Volterra

equation (2.1) satisfies

t
(2 .7 )  y ( t )  + 8 f y ( ’ r ) d -r  = ~~ ( t )  + (rep)(t), 0 < t <

0

Since y = a(u
~
)
~ 

in (Vt) satisfies an equation of the form (2 .1 )  we obtain from ( 2 . 7 )

L 

(2.8 ) u
~ t (t . x) + (r*u

~~
)(t,x) = a ( u (t , x ) )  + 8 f c(u (i , x ) ) di + q (t ,x) + (r*q)(t,x)

Thus (yE ) is equivalent to the problem

C u~~~(t , x) + (r*u tt
)(t.x) — O (u (t ,X ) )  + B f ~ O(u (T,x)) dT +

(2.9) 0 < t < “, x C R

L u ( 0 ,x ) = u0(x), u~ (0.x) u
1
(x), X C

• where

(2.10) ~(t,x) g(t,x) + (r*g) (t,x)

The jus t i f ica t ion for considering the complicated var iant  ( 2 . 9 )  of (VE) is

provided by the following proposition:

-8- 
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Lemma 2.3 .  Assume that assumptions (au ) are satisfied and let r ( t )  be defined~~~

(r ) .  Then

(i)  r ( t) I C2[0,”), r(t).r’(t),r”(t) are bounded on (0 ,— ) .

( i i )  r ( t )  — r,, + R(t); r,,, = 8/a ; R
(m)
(~ ) I L

1(0,”). in = 0.1.2.

( i i i )  For any ‘F > 0 there are constants y , q  . 0, w ith 8q ~ 1 

T 

that

(2. 11) q f v ( t )  (r *v ) ( t ) d t  — J v ( t ) (R*v) (t ) d t  > (1 + ‘y )  f v2(t)dt
0 0 0

for every v ( t )  I L2(0,T).

It is (2.11) tha t reveals the dissipative mechanism induced by the memory term

in the viscoelasticity equations. This estimate will play a crucial role in Section 5.

For the proof of Lemma 2 .3  we refer to (8, Lemma 3.21 . For the benefit of the

reader we record here the following corrections in the proof of (8, Proposition 4.11:

Equ ation (4.16) should read

—qnlmr(in) — R er ( in )  r ( q , B , n )  + 1, fl I R

equation (4 .26 )  should read

‘ 
— = m(n)g~ + n(n)

• q q(n(n) — q)

and the sentence following this aquation should read : “Given q, Q, 0 < q < Q < — ,

there exists an € > 0, c = r(q,Q), such that for every q < q < Q (4 .27 ) holds ” .

Note also that -i-- — 8Y(q ~ .n ~ ) tends to —~~(0) (and not to -~~(0)/q 2 ) .  I n the conclud—

ing argument of the proposition one needs to choose 0 < c min(€(q,Q), -2~ (0)) in

order to carry through the proof , si nce y ( q , B , n )  ~ qB - 1 — á ( 0 ) q  and 0 < — 8 <

by the choice of q and B.

We close this section by noting that on account of (2.10) , assumption (g) arid

r ’ (t ) , r ” ( t )  I L1(0,”) (L emma 2 . 3 ) ,  the forcing term t ( t , x )  in (2 .9 )  satisfies

I L1((0 o’) L2(R)), 
~~~~~~~~~~~~~ 

C (,2((Q ,..); L2 (R ) )  .

—9—
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3. Local Existence Theorem. We discuss here existence and uniqueness of local solutions

to problem (1.1), applicable to both (HF) and (yE) . Throughout this Section we will

be assuming that the initial data satisfy conditions (u0
), (u

1) and the forcing

term satisfies (0). As regards the kernel k(t). we only require that

1( ’ ( t) , k”(t) C d o ,”) fl L’(O,”) so that our analysis covers both the (HF) and the (yE)

cases. On the other hand , since the local solution will not be necessarily “small” .

for the well—posedness of the problem we have to replace (o) by the stricter assumption

(~ ) *  0 C C3 (R ) ; 0 ( 0 )  0; a ’ (w) 
~
. p0 > 0, w C (—“ ,—)

This assumption will be dropped in Sect ons 4 and S where we will limit ourselves to

“ small” sol utions .

The main result of this section is

Theorem 3.1. Let the assumptions (~~*) ,  ( 0) .  (u 0
) ,  Cu 1

) .  and k’ ,k” C d O ,”) 0 L 1 (O. — )

be satisfied. There is a unique solution u (t,x) € c
2
U0,T0

) x R) of (1.1) defined

on a maximal interval [0 ,T0
) ,  T

0 
< oo , such that, for T C (0,T0

) ,

(3. 1) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

C L ( ( 0 , T ) ;  L2 (R ) )

Furthermore, if T0 < “, then

(3. 2) 

~: 
[u~ (t ,x) + u2(t,x) + u

~ t
(t , x ) + u~~ (t,x) + u~~~

(t .x)  + u
~~ t

(t
~

x) + u
~~~

(t.x)

+ U (t , x )  ~ u 2 t .~~~]dx • , t -
~ Ttxv xxx 0

The proof of the above proposition will be based on an application of the Banach

fixed point theorem. We begin with some preparation.

For positive M and T we let X(M ,T) denote the set of functions

u (t,x) C C2((O ,TJ X R), with initial conditions u(0,x) = u 0
(x ) , u t (O

~
x) =

•. which satisfy (3.1), and

( 3 . 3 )  sup f Lu 2 
+ u 2 4 u 2 

+ u 2 
~ u

2 
+ u 2 

+ u2 + u2 + u2 ldx < H
2

t x tt tx xx ttt ttx txx XXX —
• (0 ,T 1 —“

Note that X(M ,T) is nonempty if M is s u f f i c i e n t l y  large . Also observe that for

=10-
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u(t,x) C X (M,T) (3.3) easily yields

(3.4) sup {Iu t(t,x)I .lu ~
(t,x)I.Iu t(t.x)I.Iu~~

(t,x)
~~

,Iu
~~

(t.x)
~
} < M

[0 ,T J X R t

(e.g.  u~~(t, y) — 
~: 

[u
~~

( t . x ) i~~dx < 2 1 ut(t.x)u~~
(t,x)Idx < f (u~~(t , x) + u~~~( t ,x ) ) dx  < H 2 ,

and similarly for the others).

We now construct a map S : X(M,T) -~ C
2([0,Tj X RI which carries v (t , x ) I X( M ,T)

into the solution u ( t , x )  of the linear initial value problem

- 

( 

u
~ t

(t .x )  + k(0)ut(t,x) = o ’(v ( t ,x ) ) u  (t , x) + •(t , x)  — ( k ’ *v t ) (t , x ) ,

(3 .5)  0 < t < — , x I R

L u(0,x) = u0
(x) , u~~

(O x) = u1
(x) ,  X I  R

Our goal is to show that S has a uniq ue fixed point in X (M ,T ) since the desired

solution of (1.1) is such a fixed point (note that

(k *u ~ ) (t , x) — k (0 ) u
~~

(t , x) + (k ’ *u~~
) (t , x ) ) .

Lemma 3.1 .  If H is sufficiently large and ‘F sufficiently small, then S

X (N , T) to Itself.

Proof. We have to show that the solution of (3 ,5)  satisfies (3.1), (3.3), provided

that H is large and ‘F is small. To this end we establish below a number of a priori

“energy” estimates for solutions of (3.5).

Let us assume, temporarily, that o(’), k(t), u
0
(x), u

1
(x) , •(t,x) and v(t,x)

are C sinooth on the corresponding domains of definition and that u0(’), 
u
1
(), •( t, ’)

and v(t,’) are compactly supported on R. Then the solution u(t,x) of (3.5) will

be C smooth on [0,”) x R and u ( t ,~~) will have compact support iii R for t > 0 .

Multiplying the equation in (3.5) by u
~
(t.x) and integrating over (0 , s) X B,

0 < s ‘F, we obtain, after an integration by parts with respect to x and other

straightforward calculations (for simplicity we omit the arguments of functions whenever

no confusion arises from doing so in this and subsequent calculations),

—11—
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(3.6) 
~ ~: 

u~~~s ,x) dx + 

~ 

CT ’ (v (s,x))u 2(s,x)dx — 

~ ~: 
u~~(0 ,x ) d x

— 

~ 
0’(v (O,x))u2(O,x)dx = - 1

~ 

~: 
k(O)u~dxdt

+ 0” Cv )v ~
2d cdt — 

~~ 
0”(v

~
)v
~x

utu~
dxdt

+ f f 0u~dxdt — f / (k ’ *v~
)u

~
dxdt

O -“ 0 -“

To aid the reader we indicate a calculation contained in (3.6); similar calculations

are involved in ( 3 . 7 ) — ( 3 . 1 0 )  as well as in Sections 4 , 5, 6, 7. Integrating by parts

with r espec t to x ~ne has

c o’(v )u u
tdxdt = - c a ’(v  )u

t u dxdt - 
S 

~:observing that ~~~~~ = -
~
- -

~~~~ u
2 and integrating the first integral on the right side

by parts with respect to t yields

S 

~: 
cY ’ Cv )u utdxdt = - if ~~o ’(v )u2dx}dt

+ ~~ / / o”(v )v u 2dxdt - 
I o”(v )v u u dxdt2 o —“ 

x t x x  
—“ 

x x x t x

which , together with the other terms resulting from nultiplying (3.5) by u
~ 

and

integrating , easily gives (3.6).

We next differentiate the equation in (3.5) with respect to t obtaining

~~~~ 
+ k(O)u

t~ 
— c ’ (v)u

~~~ 
+ c”(v )v u + O

t 
— k’(o)v t 

— (k ”*v~
) (t ,x)

We multiply this equation by u
~~

(t.x)
~ 

and following the procedure used in the

derivation of (3.6) we obtain -

— 12—
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(3.7) 
4LU ~~t

5
~
X dX + 4

~~: 
o ’(v ~

(s ,x ) ) u
~~

(s, x ) d x _ }  L u ~ t (o.x)dx

— 4 ~
‘ 

~ ‘(v (0 ,x ) ) u ~~~(0 ,x)dx — — I I k ( O ) u
~ tdxd t + / J 4 

a” ( v )v
~~ u~~ dxd t

— 0 -“ 0 -—

¶ - c c ~~~~~~~~~~~~~~~~~~ + f 5 o” (v  ) v
~~

u ttu dxd t + 
C •~

u
~~ dxd t

c k’ (O)v
t
u
~~

dxd t — I 1 (k” *vt)uttdxdt .

We now differentiate the equation in (3.5) with respect to x , we multiply by

u
~~
(t.x) and we follow the above standard procedure to get

(3 .8 )  
4 f u~~ (s,x)dx + 4i o’(v

~
(s.x))u

2 (s.x)dx -4! u~~ (0,x)dx

- 
4 1  

o’(v (O,x))u2 (0,x)dx = - f f k(0)u~~dxdt

+ 1~~ /

“ 

4 
o” C v

~
)v

~~ u~~ dxdt + c •xutadxd t - c (k *vta)u~~
dxd t

• The next estimate is obtained by taking the second derivative of the equation in

(3.5) with respect to t and then multiplying by uttt(t.x). In the present case

note from the equation preceding (3.7) that (k” *v
~
)(t,x) = k”(t)v

~
(O,x) + (k *vtt)(t,x) .

• The result of the calculation is

~ ~: u~tt(s.x)dx + 
~ L~ 

0 ’ (v (s , x ) ) u  (s ,x) d x — 

~ L u~~~ (O,x)dx
- 

~ ~: 
o ’(v x (o ,x u

~~~~
(o ,x)dx . — ç 

ç k(0)u~tt
dxdt

+ C ~ 
0” Cv )v

~~ u2 dxdt — 
~ L. O (v )v u

t~t
ut~~

dxdt

• 
c 

2o (v )v
tautttut~~

dxdt + 
~ L. r,” (V )v

t~~
u u

~~~
dxd t
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+ C ~: 
0 ” (v )v 2 u u  + C ~: •tt

u
~~~

dxdt - C ~: ~~~~~~~~~~~~~~~~~

— c —: 

k”(t)vt(O,x)ut~t
dxdt — c (k *v t )u

tttdxdt

The final estimate is obtained by taking the second derivative of the equation in

(3.5)  with respect to t and x and multiplying by ut~~~
(t , x ) .  We thus obtain

(3.10) 4 L. u~~~~
(s, x) dX + 

~ 
o (v (s,x))u~~~(s,x)dx — 

~ ~: 
u~~~~

(0. x)d x

- 4  f o’(v (O ,x))u~~~ (O,x)dx = - f / k ( O ) u ~~~dxdt

+ f~ .f” 4 a” (v )v u~~~ dxdt + C a= vX v
~ XX

uXX u
~~ Xdxd t

+ 
~ 

L 
a ” lv )v

~~
ut~~

u dxd t + 
L 

a”(v )v
~~
v u u tt dxdt

+ C ~: 
0
~~

u
t~~

dxdt — 
~ 

k ’  (O ) v
~~ u~~~

dxdt — 
~ 

~: 
“
~~ t~~~ ttx~~~~

We now observe that utt (O. x ) ,  u
~~~~

(O
~

x) and u
~~~

(O.x) can be expressed through

~~~~~~~~ in terms of u (x) , u ( x ) ,  u (x) , u (xl , u (x) , u (x) , $ (O , x ) ,  0 (0 ,x)Ox Oxx Oxxx 1 lx lxx t

and $ ( O , x ) .  It follows that, since u (t,x) is smooth, u(t,x) C X(M,T) provided

that M is sufficiently large and T is sufficiently small. We shall use (3.6)—(3.lO)

to estimate H and T independently of our provisional smoothness assumptions. To

this end , using (3.3), (3.4) and the Cauchy—Schwarz inequality, we majorize each

integral on the right—hand side of (3,6)— (3.lO) by a fixed constant (i.e. independent

of M l plus M 2T times a constant depending on M. For example, in ( 3 . 9 ) ,

~ 

L. ~~~~~~~~~~~~~~~~~~~~~~~ 
< m a xj o ” (v  )v t I f f ~~~~~ 

+ u~~~)dxdt

< CM max to ( . ) I ) M  T
(-M , M)

— 14—
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~~~~~~~ C :~: •~,t
dxdt + I I u~~~dxd t 

~ 
~~ +

— (k” *vtt
)u

ttt ~~~ t 
~~

, f (k” .v~~ ) 2dxdt + 

~~~~ 

u
~~~

dxdt

‘ 

~ ( (
~ Ik ” ( t ) Idt ) 2 

+ 13 M 2T .

Since u (t,x) does not appear on the left-hand side of any of the estimates (3 . 6 ) — ( 3 . 1 0 ) ,

we have to express it in terms of other derivatives via

(3.11) a ’( v
~

)u — 
~~~~ 

+ k(O) ut 
- o” (v )v

XX
u — + ( k ’ *v~~ )

which is obtained by differentiat ing (3.5) with respect to x. On account of (~~) * ,

(3.3), (3.4) and in conjunction with (3.8), (3.10). equation (3.11) yields an upper

estimate for f u2 (t ,x)dx by a fixed constant plus M 2T times a constant depending

on H.

Combining all the above estimates we obtain

(3.12) 5 Iu~~(t , x) + u2 (t , x) + u~~~
(t , x) + u~~~(t ,x) + u2 (t , x) + u

~~~~
(t. x)

+ u2 (t, x) + u2 (t ,x) + u2 (t, x ) J d x  < A (u 0
,u1

,0) + B(M) M 2T , 0 < t < ‘F

The constant A can be estimated solely in terms of the L2(R)-riorms of u0,~, ‘~o~~’
u0~~~

. u1
, U

1
, u1 ; the L2(j0,°”); L2(R)) norms of ~ ~~ ~~ ~~ ~~ ~o 

of

(0)* ; bounds on a ( - ) ,  o”(.) and k ’ ( ’ ) .  The constant B can be estimated solely

in terms of H and bounds on 0’(’), o” ( . ) ,  o”(.), k’(’), k ” ( ’ ) .  It follows that,

even thou gh (3 .12)  was established under supplementary smoothness conditions , its

validity can be extended by a simple density argument to the standing assumptions of

this section.

We now select N ‘ t2A (u0
,u1,•)l~

”2 and then ‘F < 12B(M) 1
1 in which case the

right—hand side of ( 3 . 12 )  is dominated by H 2 . I t follows that with this selection of

N a nd ‘F, S maps X( N , T) into i tself.  The proof of Lemma 3 .1  is complete.

- 
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We now equip X (M, T) with the metric

(3. 13) p ( u ,~~) — max if I ( u  (t , x) - u
~~

(t . x ) ) 2 
+ (u (t , x) - u (t , x ) ) 2

)d x } 1”2
jO,Tl -= 

x x

Using the lower semicontinuity property of norms under weak convergence in Ba nach space,

it is easily verified that )C(M,T) becomes a complete bounded metric space. We now have

Lemma 3.2. For H sufficiently large and T sufficiently small the !~~P

S X ( M , T) -
~ X(M ,T) is a contraction.

Proof. Let v (t , x ) , v ( t ,x)  I X ( M ,T ) .  We set u = Sv, U = Sv , V = v — V , U = U — U.

Then U( t , x) is a solution of the ini t ial  value problem

Ut~
(t.x) + k(O)Ut(t.x) = a ’( v (t , x ) ) U  (t ,x )  + X (t.x)Uxx (t~

X)Vx(t~
x) — ( k ’ *V t ) C t , x) ,

(3.14) 0 < t < T, x C R

I 
U ( 0 ,x) = 0, U

t
(O.x) = 0, x € R

where x ( t , x) is the bounded continuous function

(‘o’(v (t,x)) — o’(v (t,x)) 
—I ~ — 

x 
if v (t,x) * v (t,x)v ( t ,x)  — v (t ,x) x x

(3.15) x ( t , x) = 
S 

X x

i,,,, 
0” ( v ,~(t ,x ) )  if v

~~
(t . x) = ~

(t .x)

Mul tiplying (3.14) by U t ’ integrating over [O, s] x R, 0 < S < T, and after an

integration by parts we obtain

(3.16) 41 IJ~ (s,x)dx + 
4 f a’(v (s,x))U2(s,x)dx

• = — 
~~ 

~: kCOlU ~
dxdt + 

~~ 
4 

o” v
~~~~~

U
~~~~

t

— f f 0” Cv lv U
~

LJ dxdt + / / xU
XX

VxUtdxdt

- C L: (k ’ *V t )U tdxdt

We minorize the left—hand side of (3.16), using (o)* , and we majorize each integral on

the right—hand side usi ng (3.4) and the Cauchy—Schwarz inequality thus obtaining

—16— 
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(3.17 ) J (U~~(e, x) + (J~(s,x)jdx

...~x I lV~ C t , x )  ~~~~~~~~~~~~~~~~~~~ 
/ (U~ (t ,x) + U 2 ( t ,x ) J dx d t ,  (0 5 < T)x 
-=

where ~i depends solely on M , max o ’ ( ’ ) j ,  max Io ” ( ’ )  , p k(O), and f I k ’ ( t ) I d t .
( — M, M) [-M ,Ml 0

Applying Gronwall’s lemma to (3.17) yields

(3.18) max / iU~ (t,x) + U 2 ( t ,x ) J d x  < Te~~ max / IV~~t,x + V2(t,x)ldx
10,?) —— 

x 
[O ,TJ -=

We now fix H suff iciently large and , subsequently, we pick ‘F so small that on the

one hand S maps X(M, T) into itself (Lemma 3.1) and on the other TeNT < . This

implies that

(3.19) p (Sv,Sv) < 
4 ~~~~~~~~~ for ~,; C X(M,T)

The proof of Lemma 3.2 is complete.

Proof of Theorem 3.1. From Lomna 3,2  and the Banach f ixed point theorem we deduce

the existence of a unique fixed point of S in  X(M, T ) ,  for some M > 0, ‘F > 0, which

will be a solution of ( 1.1) on [O , Tl X R. Let T
~ 

< “ be the maximal interval of

existence of a solution u(t,x) of (1.1) which satisfies (3.1) for all

‘F < T0. Then u(t,x) is locally and hence also globally unique as the fixed point

of a contr action.

If ‘Fo < — and (3 .2 )  is not satisfied, we can extend u ( t , x) up to t = T
~ 

so

that u ( t , x) F C2UO,T01 K R) and , by weak convergence in L2 (R ) , u
~~

(T0.x ) .  u ( T 0 ,x) ,

u ( T
0

, x ,  u~ (To.x) . U
t 

(T0 , x ) ,  ut,~~
(T o~

x) C L2(R). Bitt then u (t , x) can be

extended as a solution on a small interval [To .To + ~I beyond ‘Fo which is a

contradiction. This co1~~letea the proof of Theorem 3.1.

As o(’), k(t), and the da ta u0
(x ) ,  u1

(x) and $( t , x )  get smoother , the

- solution becomes smoother , We record below a regularity result that will be used in

Sections 4 and 5.
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Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied. Under the additional

assumption

( 
a ( . )  C C4 (R )

(3.20) ) u (x ) ,u Cx ) I L2(R)Oxxxx lxxx

I 0 .0 ,~ C L2UO,”); l.2(R))
V. ttt tt3C tax

the solution u(t,x) of (1.1). established by Theorem 3.1, also has the property

(3.21) u ,u ,u .u ,u C L ([0,T); L2(R))tttt tttX ttxx tXXX XUX

for every ‘F < T~ . where 10” Fo~ 
is the maximal interval of existence.

Sketch of proof. For positive H, N, ‘F, we denote by Y( M , N, T) the set of functions

u(t , x) I C3([0,TJ x B), with initial conditions u(0,x) = u0
(x ) ,  u~

(O.x) =

which satisfy (3.1), (3.3), (3.21) and

( 3.22) 
(O ,T] ~: 

[u~ + u2 
+ u~~ + u~~ + U

2 
+ 

~~~~~ 
+ 

~~~~ 
+ u~~ + 

~~~~ 
+

I 

+ u 2 + u + u ~~~~~ + u 2 Jd x < N 2

We consider again the map S that carries vCt . x) to the solution u ( t ,x )  of (3.5)

and we try to show that it has a f ixed  point in YCM ,N , T) ,  for appropriate values of

• H, N , I. We proceed as in the proof of Lemma 3.1. To the set of “energy” integrals • -
(3.6)—(3.l0) we append another integral obtained by forming the third derivative of

(3.5) , with respect to t , t and x, and
_

then multiplying by 
~~~~~~ 

This allows

the estimation of f u~~~~~
(t

~
x)dx and I u~~,~~~

(t . x) dx.  These estimates together with

• 
(3 .5)  yield estimates for f u

~ t~ t (t . x)dx .  / u~~ (t , x)dx and f u~~~~~
(t. x)dx .

Combining all above estimates we obtain, as in the proof of Lemma 3.1,  the following

analog of (3.12):

( 3.23) 5 Lu~~(t ,x )  + u2 (t , x) + u
~~~

(t . :) + u~~~(t ,x ) + u 2 ( t ,x )  • u ~~ t (t .x) + u~~~~
( t .x)

- + u
~~~~

(t .x )  + uxxx (t . x)  + ut t tt
( t .x )  + utt~~~

(t .x)  + u~~~~~
(t .x)

2 2 * * 2
+ u

taxx (t , x) + U ( t , x ) J d x  < A (u 0 ,u 1,~~) + B (N )N ‘F

18
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*The crucial Observation is that B depend. on K but not on NI The reason is that

in deriving (3 .23 )  the integrals to b. maj ori sad are at most quadratic in the highest

ord er derivatives (wh ence the term N2 ) with coefficients that depend on derivatives

of v( t ,x )  of order at most t~~ and are thus bounded ,- in view of (3 .4 ) , solely by

functions of N. Similarly, we recall that u, in (3.18), depends on H but not on N.

It follows that the maxima l interval of existence of the smoother solutions is controlled

solely by H , i . e . ,  (3 .21)  will be satisfied for any ‘F for which (3.1) is satisfied.

This concludes the sketch of the proof of Theorem 3.2.
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4. Global Existence and Asymptotic Behavior of Solutions of the Heat Flow Equation. In

this section we consider problem CHF) and we prove that if the initial data and the

forcing term are “small” then the maximal interval of existence of the solution constructed

in Section 3 is 10 ,~~) and that the solution decays to zero , as t • =. Our strategy

is to show that the dissipative mechanism induced by assumptions (a
H

) ov~-rr ides the

growth tendencies of the solution caused by the nonlinearity of o (~ ). Conclusion

of Lemma 2.1 (iii), which was not used in Section 3, p]ays a crucial role in

this argument. The precise form of the result is

Theorem 4.1. Let ( o ) ,  (a N ) .  ( f )  and Cu 0
) be sa t isf ied.  If the L

2 ( [0 , o’ ) ;  L2(R))

norms of f, f , f , f , f , f • f , f , f and the L2(R) norms of ut X tt tx xx ttt  ttx txx Ox

u0
, u

0 are sufficiently small, then there is a unique global solution

u (t , x) C C2(f0 ,°”) x RI of (HF) and

(4.1) ut .ux.utt .u ta ,u x .uttt ,u tta ,utr ,u I L (L0 ,); L2(R))

(4 .2 )  ut .u tt~
uta .u xx~

uttt .utta.u ta ,u E L2(fO ,); L2(R) ) ,

(4.3) ut(t.
.),utt(t,

.),u
~~

(t,.),u (t ..) -
~ 0, t -~ , in L2(R)

• (4. 4) u (t ,x) ,u (t , x ) , u Ct ,x ) , u (t ,x ) , u (t ,x) -
~ 0, t -

~ = . uniformly on Rt x tt tx xx

Remark 4.1. It follows from the proof of Theorems 3.1 and 4.1 that the solution u

of (HF) has a finite speed of propagation.

Proof. We will work with form (1.1) of problem (HF) with 0(t,x) and u
1
(x) given

by 
~
2
~
4
~H 

and 
~
2
~
51
~~’ 

respectively. In order to make sure that the problem is well-

posed , we have to restrict the range of u
~~

(t . x) to the set on which o ’ > 0. To

this end we introduce a constant c0 ~ 0 such that

( 4 5 )  0’ (w) > p
0 > 0, w I

At this point it is convenient to define

w
(4. 6) W (w) — f a (~~) c~~

0

and to note that, on account of (4 .5) ,

( 4 .7)  W(w ) ‘ 4 p0w2 , w I [—c
0,c0

)

-20-



We will say that a quantity is “controllably small”, if it can be made arbi trar i ly

small by selecting the initial data and the forcing term appr opria te ly  small .  For

example, on account of Cf ) , Lemma 2.1 (ii), 12’41 H and ~
2 5

~H’ 
the L 2 ( [0 . °”) ; L2 (R ) )

norms of 0, (~~ • 
~~~

‘ ~~~~~~ and the L2 (R ) norms of U
1
. U

1
, u

1 
are controllably

small.

Our strategy is to show that there is a small positive number u ,  ~i < c0, depend-

ing solely upon a (the constant appearing in (2.6)H). p0~ 
bounds of c’(’)

~~.

and a”(’)~ on (—c
0
,c
0), and the L1(O ,=) norm of k’(t), such that

if the local solution u ( t ,x) of ( 1.1),  in the sense of Theorem 3.1, satisfies

(4.8) u ( t , x ) I .  u~~
(t ,x ) I . uxx (t .x ) j  < ~j , 0 ~ t ~ ‘F , x € P

then certain functionals of the solution are controllably small.

We begin by multiplying the equation in (1.1) by ut (t.x) and integrating each

term over [0,sJ x R, 0 < $ < T. We integrate the term

C
by parts with respect to x and use ( 4 . 6 ) ;  we then use 

~
2 ’ 6

~ H to estima te the term

s =  t
f f u~~(t , x) 

~~ f k(t — r)u t(r,x)dtdxdt

and we thus obtain the estimate

(4.9)  41 u~~(s , x)dx + / W(u (s, x ) ) d x  + a f f u~dxdt

< 
4 /  u~~(0 , x) d x + 5 W ( u (0, x ) ) d x  + C •u dxdt

We note that each term on the right-hand side of (4.9) either is controllably small

or can be majorized by the sum of a quantity that is controllably small and a quantity

that is dominated by the dissipation term , such as

• 
• 

_ . 

(4 . 10) / 5 u
t
dxdt < 

~
- f 5 •

2dxd t + 
~

- f f u~dxdt

—21-
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Thus, for as long as (4.8) is satisfied with u ‘ c
0
, (4.9), (4.10), together with

(4.7), yield that 

~: 
u~ (s,x)dx , ~: 

u 2 (s, x)~~, and 

~: 
u~dxdt are controllably small,

uniformly on (0, T) .

We now derive two additional estimates, the first by differentiating the equation

in (1.1) with respect to t and then multiplying by u
~t

(t .x). the second by

differentiating (1.1) with respect to x and then multiplying by u
~~~

(t. x ) .  Following

the procedure in the derivation of (4.9), and noting that I -

(4. 11) (k*u t
) (t ,

~~ = 
~~~ 

(k*utt
) (t . x) + k ’ ( t ) u 1(x) ,

we obtain

(4. 12) 4 5 u
~~
(s.x)dx + 4 5 o’(u (s,x))u2 (s.x)dx + 

~ ~~

4 1  u~~~(0, x)dx + 
~~ 

a ’ (u C0,x))u~~ (0,x)dx + C ~: ~ 
a”(u

~
)u
~~~~

dt

+ C •~
u

~~
dxdt — C k ’ t u iu

~~
dxdt ,

and

(4.13) 
~ ~: 

u~ (s ,x )dx  + 
~ L~~~

’ Cu (s,x))u2 (s,x)dx + ~ 
~ 

L 
u~~dxdt

~ ~: 
u~~~(O , x)dx + 

~ 
~~• Cu (0,~~~~i

2 (O ,x)dx + 5

S 

~: ~ 
o”(u

~
)u
~~
u2
~
dxdt

~~~~~ + f f  O u  dxdt .
-= x tx

We add up ( 4 . 1 2 ) ,  (4.13) and we claim that in the resulting inequality , and as long as

• (4 .8 )  is satisfied with u sufficiently small , each term on the right—hand side is

either controllably small or can be majorized by the sum of a quantity that is controllably

small and a quant i ty  that is dominated by the dissipation term. Indeed , the L2 (R) norm

of u
~ t (O .x) is controllably small since

(4.14) u
~ 6

(O .x )  • c7 (u~~~( x ) )  + •(0 ,x) — k ( 0 ) u 1
(x)

-22-
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space-time integrals are majorized in the pattern of the following representative samples:

(4. 15) c •~
u
tt
dxdt 

~ 
~ L 

•~dxdt + 

~: 
u
~~

dxdt

(4. 16) — C ~: 
k’ ( t ) u

1u
~~

dxdt < ~
- sup~k’ (t) 1 1k ’ ( t )  Idt 

~: 
u~~ x d x  + c ~: 

u
~~

dxdt

(4.17) 1 / 5 
a ” (u )u 3 dxdt < ~ - max t a ’ ( ’)  I / 1 u2 dxdt

0 - F— c 0 ,c
0 1 0 —=

(4 . 18) 5 1 5  0 ’(u )u t u 2 dxdt <~~~~ max Ia ” ( ’ ) I / 5 u2 dxdt
O —= I—c0,c01 0 —=

To estimate the integral on the right—hand side of (4.18), we express uxx (t•X) in

terms of other der ivatives by

(4.19) o ’(u (t,x))u (t ,x) = u
~~~

Ct ,x) + k ( O ) u t (t .x) + (k ’ *u t ) ( t ,x) — •(t ,x)

which yields

- 
(4.20) p~ J 1

= 
u2 dxdt 4 f 5 u~~dxdt + 4k2(0) C ~: 

u~ dxdt

+ 4 (1 lk’Ct ) Idt)~ f f  u~dxdt + 4 f 1
= 

$2dxdt
0 0 -= 0 -=

The restrictions imposed on u are expressed in terms of parameters f ixed a priori.

For example, (4.17 ) imposes the restriction umax a ” ( ‘ )  < ~~~~. The combination

=
of (4.12), (4.13) and (4.20) yields that, as long as (4.8) is satisfied , f u~~~

(s .x) dx ,

5 u~~~(s, x)dx , 
L 

u2 (s,x)dx, u
~~

dxdt. 5 u~~ dxd t and J 5 u 2 dxdt are

controllably small, uniformly on [0,1).

To get the final set of estimates we assume temporarily that the additional

hypothesis (3 .20 )  is satisfied . Thus, by Theorem 3.2 , u C t ,x)  enjoys the additional

smoothness property ( 3 -21 ) . We form the second derivative of the equation in (1.1)

with respect to t and we multiply by u
~~t

(t.x) ; also the second derivative of the

equation in ( 1. 1) with respect to t and x and we mult iply by u
~ t~~

(t . x ) .  Following

—23—
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the procedure used in the derivation of the previous estimates we obtain

(4.21) 
~ ~: 

u
~~~~

(s
~

x)dx + 

~ ~: 
o
~~

u
~~

s.x u
~~~~

(s
~

x) dx + u [ ~: 
u
~~~

dxdt

~ ~: 
U
~tt

(O,x)dx + 
~ ~: 

n ’( u  (O ,x ) ) u 2
~~~( O , x ) d x  

~ ~~ 
s a”(u )u

~~
u2 dXdt

+ C ~: 
20 ” (U

x u
~t
u
~~~

dxdt + C ~: ~ (u )u 2 u u d x d t

+ C •tt
utttdxdt — C L k’(t)u

~t
(0,x)u

~tt
dxdt — L. k”(t)uiutt~dxdt

(4 .2 2) 
~ L 

u
~~~

(s,x)d
~
c + 4 1  O ’(u  (s, x ) ) u 2 (s , x)d x + ° L. u~t dXdt

< 5 1
= 

u
~~~~

(0 ,x)dx  + 51
= 

a ’ (u (0 ,x ) ) u 2 (0, x) dx

+ C ~: ~ 
a ” Cu )u

~~
u
~~~

dxdt + 
~ 

a”(u )u utt u
~~~

dxdt

+ C ~: 
a ” (u ) u u u d x d t  + C ~: ~ (u~)u~~u2 u

~~~
dxdt

+ 

~~~~ 

•txUttxdXd t 
- 

S 

~: 
k ’ ( t ) u

1
u dxdt

We add (4.21), (4.22) and we claim that, as long as (4.8) is satisfied for a sufficiently

small p . then each term in the resulting inequality is either controllably small or

is majorized by the sum of a quantity that is controllably small and a quantity that

is dominated by the dissipation term, The L2(R) norms of u
tt~

(O.x) and uttx
(O .x)

are controllably small since

(4.23) u
~~~

(O.x) (“(u (x))u (x) + a ” (u  (xf lu 1 
(x )u  x +

— k(0)u
~t

(O.x) — k ’ ( 0 ) u
1

(x ) ,

- 
(4.24 ) u (0 ,x) = o ’(u  ( x ) ) u  (x )  + a ” ( u  ( x ) ) u 2 C x )  + 0 (0 ,x)  — k(O)u (x) .ttx Ox ~~xx 
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Whenever utax(t~
X) or u x Ct.x) appear on the right—hand side, they should be

estimated in terms of derivatives for which dissipation information is available with

the help of

(4.25)  a ’(u (t ,x ) ) u ta u ttt (t .x )  — o”(u (t
~
x))u

t 
(t,x)u (t,x) — 0

~~
(t .x )

+ k ( O ) u
~ 6 Ct .x )  + k’(0)u

~
(t,x) + (k ” *u t ) ( t , x )

(4.26) 0’(U (t,X))U = ut~~~
(t . x) — a”(u (t,X ) ) u 2 ( t , x )  — • (t ,x )

+ k ( 0 ) u ~~~(t, x) + (k’*ut
)(t,x)

Beyond that the estimations follow the usual pattern, e.g.,

(4.27) f L. ~~~~~~~~~ ~ ~ C ~: 
0
~~

dxdt + 

~ C L: 
u
~~~

dxdt

(4.28) / 5 o ” (u )u2 U u d x d t  < max j a ” C .) I J I (u~~ + U 2 
t~~

xdt
0 —= [—c 0,c0) 0

( 4 . 2 9 ) — / L. k”(t)uiut~tdxdt ~ supjk” (t) I I Ik” (t ) Idt 5 u~ (x)dx + 

~ / f u~~~dxdt

Combining (4.21), (4.22), (4.25~ and (4.26) we deduce that 5 u
~t~

(s.x)dx ,

f u~~,~(s~x) dx , 

~: 
u~~~ (s ,x)d x , 5 u2 Cs ,x)dx , 1

~ 

~: 
u
~ t~

dxdt . 
~ 

~: 
u
~~~

dxd t.

~ L. u~ dxdt and L. u2 dxdt are controllably small, uniformly on [O ,T). More-

over , we observe that the estimates involved depend Solely on parameters depending on

the standing assumptions of the theorem and not on the additional assumptions (3.20).

Therefore, by a straightforward density argument , we may remove these extraneous

• assumptions,

We now put together the information we have collected on controllably small

quantities in all of our estimates, and we Select initial data and forcing term so

“small” that,  as long as (4 .8 )  is Satisfied ,

—25—
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(4 .30)  5 [u~~(s , x) + u 2 (s ,x)  + u
~~~

(s. x) + u~~~(s,x)  + u 2 (s , x) + u
~~ t (s .x)

+ u 2 (s ,x)  + U 2 (s ,x)  + u2 (s,x)ldxttx tax xxx

+ C ~: 
u~ + 

~~~~ 
+ u 2 

+ u 2 
+ 

~~~~ 
+ 

~~~~~ 
+ 

~~~~ 
+ u2 )dxdt < p2

0 < a < T. However, (4.30) implies, in return. (4.8) and the cycle closes . Once (4.30)

has been established, Theorem 3.1 yields that the maximal interval of existence of

u(t,x) is (0,’-) and (4.30) is satisfied for 0 < s < . In particular , (4.1) and

(4.2) are satisfied .

Statement (4.3) is an immediate corollary of (4.1). (4.2) while (4.4) is a

corollary of (4.3) and (4.1). The proof is complete.

I
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5. Global Existence and Asymptotic Behavior of Solutions of the Viscoelasticity

Equation. We show here tha t when the initial data and the forcing term are “small”

problem (yE) admits a unique, globally defined, solution which decays to zero as t -.-~~~~ .

We note that the solution u of (yE) has a finite speed of propagation (see Remark 4.1).

The estimate (2.11) of Lemma 2.3 (iii) plays a crucial role in the analysis. The

result is given by

Theorem 5.1. Let ( a ) , (au) .  (g ) ,  (u 0
) and (u 1

) be satisfied. If the L1([O ,°’); L
2(R))

norms of g, 
~~ 

the L2(10 ,”); L2(R)) norms of 
~~ ~~~~~ ~~~ and the L2(R) norms

of u , u , u , u , u , u are sufficiently small, then there is a uni que— Ox Oxx Qxxx 1 lx lxx

global solution u ( t , x) E C2([0,”) x R) of (yE) and

(5.1) U
t
,U .U .U ,U ,U ,U . U ,U C L’-Uo,’”); L2(R))

(5.2) Utt .U ,u ,U , U . u ,U C L~ ([O ,o’); L2(R))

(5.3) uttCt ,.),u
~~

(t, .),u
~~

(t,.) -
~ 0, t -

~ , in L2(R)

(5,4) u
t(t.x )ux(t.x)~

utt(t.x),ut (t.x),u (t,x) -~ 0, t -~ , unif. on R

Proof. As in the proof of Theorem 4.1, we will work here with form (1.1) of our problem.

We introduce again c0 by (4.5) and W(w) by (4.6) noting (4.7). We again consider

a local solution u( t , x) of (1.1), in the sense of Theorem 3.1, which satisfies (4.8)

for some ‘F , 0 < ‘F < , and a small positive i , p < c0
, to be specified later.

To get the first estimate, we multiply the equation in (1.1) by u
~
(t
~
x). we

integrate over [O ,s) x R, 0 < s < 1, integrating by parts with respect to x,  and

we use (2.6)~~ thus obtaining

= = S ‘-
(5.5) 4 f u~~(s ,x)dx + 5 W(u (s,x))dx ‘ 

4 5 u~~(O, x)dx + 5 W(u (O,x))dx + I I $u
~
dxdt .

Noting that

( 5.6) J 5 ~~~~~~~~~ 
< 

10 ,51 ~: 
u~~(t , x)dx + (J 11 ,

2
dx)l~

’2
dt)2

and using ( 4 . 7 ) ,  we deduce from (5 .5)
/

—27—



~ __.~__. .•-.... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~‘~~~~~~~~~~ • _W “

—-

— — — — —

(5 .7 )  
~ ~: 

u~~(s , x) dx + 
~~0 ~: 

u2 (s ,x)d x

< f u~ (x)dx + 2 
L 

W(u
0 

(x))dx + 2(f 028x)112dt)
2
, 0 s

It is easily seen that, on account of (2.4)~~ . the L1UO ,=); L2(R)) norm of 0 is

controllably small, so that it follows from (5.7) that 

~: 
u~ (s ,x)dx and u 2 (s ,x) dx

are controllably small, uniformly on [0,T).

In the following estimates we seek to take advantage of the dissipative mechanism

which manifests itself through Lemma 2.3 (iii). To this end , we shall use the

equivalent form (2.9) of our problem (yE).

We differentiate (2.9) with respect to t and we multiply the resulting equation,

first by u
~t

(t.x) and then by ut(t.x) . Integrating over [0,s] x R, 0 < S < T,

integrating by parts with respect to x , etc., we end up with the following two

equations:

(5.8) 4 f  u~~~
(s .x)dx + 

~ ~~~ 

o’(u (s,x))u2 (s,x)dx + 
~ L. ~~~~~~~~~~~~~~

— B f f a’(u )u2 dxdt = 

~: ~~~~~~~~~~~~~~ + 5 f  a ’(u (0,x))u~~ (0,x)dx

+ 
~~ 

S 
a” ( u x )u

~ xdx d t _ B  

~: 
a(u

~
(s
~
x))u

~ 
(s,x)dx+B a(u (O,x))u

~~
(O,x)dx

+ ~~u~~dxdt

~~~ ~~~~~~~~~~~~~~~~~~ 
W ( u (s , x ) ) d x  — f 5 u

~~
(R*utt

)dxdt

5 = S = = =
— f 5 u~~ d x d t+ f  5 a’(u )u2 dxdt = ~~ — 5 u~ (0,x)dx + 8 f W (u (0,x))dx

— 

~: 
u t (s, x ) u t~~

(s , x ) d x + f
T 

u t (O .x)u tt (0 ,x ) dx

— f ut (s ,x) (Rau
~ t

) (s , x) dx + 
s 

~: ~~u~dxd t .
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We now multiply (5.8) by q (see Lemma 2.3) and we add it to (5.9). Using (2.11) we

obtain

(5.10) 
~

2’— f I 2 Cs,x)dX + 8 5  W (u (s,x))dx + 
~ J u

~t
(s
~
x)dx + 

~ / 
n ’(ux (s,x))u~~

(s,x)dx

+ y f / u
~~

dxdt + (1 - q B) f 5 o ’(u )u 2 dxdt

< 
~f 

1 u~~CO , x )dx + 81 W(u (0,x))dx + 
~ 5 u~~ (0,x)dx

+ 

~~ ~: ~~‘ (u (O ,x u
~~~

(0 , x) dx _ u t (s , x) u
~~~

(s , x ) d x  + U
t
(o,x)utt(o.x)dx

- qB 5 a(ux (s,x))ut
(s,x)dx + qB 5 a(u C0 .x))u

~~
(O.x)dx

— 5 u~ (s,x) CR*u~t
) (s,x)dx + q f 5 4 a”(ux)u~~dxdt

+ 

~~~ 
~
l’tt1td~

)t + q f 5

We claim that each term on the right—hand side of (5.10) is either controllably small,

as long as (4.8) is satisfied with sufficiently small U, or it can be majorized by

the sum of a controllably small quantity and a quantity dominated by the left-hand

side of (5.10). Thus , for example, the 1.2(8) norm of u
~~

(O.x) is controllably

small in view of (4.14). Also

(5.11) — / u t Cs . x ) u
~~~Cs ,x ) dx  

~ 
~ ~_: 

u 2 ( s ,x ) d x  + 
L, 

u
~~~

(s .x ) d x

( 5 . 1 2 )  - ut (s .x) (R *u
~ t ) ( s .x ) d x  

~ ~: 
Iut (s ,x ) I{ f  82(1)dT }l/2{1

5 
u~~~

(T
~

x ) d t } ”2dx

1 sup~~~(t )  I I I R t  Idt 

~: 
u~~( s ,x) d x  + 

~
- J 5 u~~dxdt

(5 .13)  q f 5 ~ 
a ” Cu ~~~~~~~~ < max I o ” ( ’ )  I 5 / u~~dxdt

0 t -c 0 .c0) 0 -
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~~~~~~~~
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(5.14) 1 1 ~~~~~~~ < ~ - max / u~~(t ,x)dx + (f (f I’~dx)
1’~
2dt)

2

0 —‘- [O, s) -= 0 -‘-

$ 2 ’ - ’ -  8 ’ -
(5.15) q f f Y

tu dxdt < 
~ J 5 1~ dxdt + 

~ f 5 u~~dxdt

Af ter the above estimati:ns (5.10) yields that  
~~ 

u
~~~

Cs .x) dx . 
~~ 

u~~~(s ,x)dx ,

5 5 u~~dxdt and / 5 u~~dxdt are controllably small, uniformly on [0 ,1), of
0 -‘- 0 -=

course always as long as (4.8) is Satisfied for a sufficiently small p (from (5 . 13) ,

pq max Ia ”~~ I < (1 - qB)p 0) .  Using (4.19) which we rewrite, after an integration
f— c 0 ,c0J

by parts , in the form

(5. 16) o ’( u (t , x ) ) u Ct , x)  = u~ t (t , x) + k ( t ) u 1 (x) + (k*u~ t
) ( t .x)  — • ( t , x )

we deduce that also u 2 (s , x) dx and f 5 u 2 dxd t are controllably small,

uniformly on 10, 1) .

To get the next estimate we assume temporarily that condition (3.20) holds, so

that u(t , x) is emoother , we take the second derivative of (2.9) with respect to t

and x and we then multiply the resulti ng equation first by u
~~~~

(t .x)  and then by

u~~~
(t

~
x ) .  We integrate over [0 ,s ) R , 0 ~ 5 < T, and after a long computation we

arrive ~t the following two equations~

• ( 5.17) ~: u~~~~
(s ,x) dx + 

~ ~: 
a ’ (u (s ,x ) ) u ~ (s,x)dx + c ~~~~~~~~~~~~~~~~

- B f f O ’ ( u )u 2
dxdt 

~ L. u
~~~~

(0 ,x ) dx  + 4 /  a’(u (0.x))u
~~~

(O,x)dx

— B / O I(U
x

(S
~

X ) ) U  (s. X )u
ta

(s, X )dX + B f o ’(u
~~(0. x) ) u (O , x) u

~~~~(O,x)dx

+ 
~~ 

~~ u~~~~~~~~~~~ndt + 
~~~
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- C ~~
- 

~~~~~~~~~~~~~~~~~~ 
- i ~~~~ ( u ) u

~~ u 2 u
~~~

dxd t

+ 8 c a” (u 5)u
~~

u u
~~~

dxdt + c
( 5.18) j~~

— f u~~~(s , x) dx + L. a ’(u  (s .x ) ) u 2 (s ,x)dx - 
~ 

L, 
u (R*u~~~

)dxdt

— 
~ 

£~ 

u
~~~

dxdt + f  / a ’ (u )u 2 dxdt = ~~~— f u~~~(O , x)dx

+ 

~ 
a ’ (u (0,x))u2 (0,x)dx - 5 u (s.x)ut~~

(s.x)dx + 5 ut (O .x) u6~~~
(0 .x)dx

- u
~~~

(s.x)  CR *u~ ta
) (s,x)dx — C ~: 

a” uxluta
uxxutaxd~~t

+ 
~ f / a”(u )u

~~
u2 dxdt -

~ 

~~

Multiplying (5.17) by q then adding it to (5.18) and using (2.11), we obtain

( 5. 19) -
~~~

- / u~~~(s, x)dx + ~ 5 a ’ (u ( s , x ) ) u 2 ( 5 ) ~~~ + ~ 5 u~~~~(s,x ) dx

+ ~ 5 a ’(u C s , x ) ) u
~~~~

(s , x) d x + y f f u
~t~

dxdt

+ (1 - qB) C ~: 
a ’ (u )u 2 dxdt ~ 

~~~ ~: 
u~~~(0 , x)~~ + 5 o’(u (0, x ) ) u 2

(0,x)dx

+ 5 u~~~~
(0. x)d x + 5 O ’ (U x (0

~
X ) ) u~x

(0
~

x)dx — 5 u
~~~

(s .x)u t~~~
(s .x)dx

+ f uta (0
~

x)u
~~~~

( 0.x)dx - qB .1 a ’( u
~~

(s. x ) ) u
~~~

(s .x) u
~~ 5

(s .x)dx

+ qB / n ’ ( u ( O .x ) ) u xx ( O . x ) u tax (O, x) dx — / u~5
(s,x (R*u~~~)s.x)dx
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• + q / 5 4 
a”(u )u

~~
u

~~~
dxd t + q 5 5 a”(u )u u

~~~
u
~~~

dxdt
0 - ’ -  0 -0s

— q f f 0” Cu )u
~~

ut~~~ 
dxdt — q C ~: ~ ~~~~~~~~~~~~~~~~~~

+ ~ C ~: 
a” (u x )u ta uxxu taxdxdt - C ~: 

a ” ( u x )u tauxxu txxdxdt

+ 2 ~~~ 
a” (u 5)u t5u

~~
dxd t + C ~~~ 

ICI
t~

u t~
dxdt + q C ~: 

I’tx~ttx~~~
t

As long as (4.8) is satisfied with u sufficiently small, each term on the right—hand

side of (5.19) is either controllably small or it can be estimated by the sum of a

controllably small quantity and a quantity dominated by the left-hand side of (5.19).

To show that the L2(R) norm of u
~~~

(O.x) is controllably small, we use (4.24). To

estimate u we express it, with the help of (4.26), in terms of derivatives onxxx
which we already have information. The remaining steps of the estimation follow the

by now familiar pattern. For example,

(5 .20 )  — 

~: 
~~~~~~~~~~~~~~~~~~~~~ 

< 
~ f u~~~(s, x) d x + 

~ f u~~~~(s ,x) dx , 

‘

(5 .2 1)  — I u~~~
(s ,x) (R *u t~~

) ( s , x)dx

~ sup I R ( t )  I f ~R ( t) Idt 

~: 
u~~~(s , x)dx + 

~ C ~: 
u
~~~

dxdt ,

(5.22) q j
S j O” (u ) u u u d x d t < max Io ”~~ I 5 5 (u

~~~ 
+ u~~~~)d xdt

0 (—c
0
,c
01 0 —=

• 

(5.23) q f 5 ~~~u~~~dxdt ~ r ~~~dxdt + ~ C ~: 
u
~~~

dxdt

Thus, (5.19) yields that,  as long as is sat isf ied with small p .  / u
~ t~~

( s . x ) d x .

J u~~~~(s, x)d x, J I u
~~~

dxdt and f f u~~~ dxd t are controllably small, uniformly
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on (O ,T). We now discard, with the help of a density argument, the extraneous

hypothesis (3.20) . Using again (4.26) we conclude that / U
2 

(s,x)dx and

5 f u
2 dxdt are controllably small , uniformly on [0,T). Finally , using (4.25).

0 -‘-

after rewriting it in the form

(5 .24)  u
~~ t (t .x) = a’(u (t.x))u

~ 
(t,x) + a” (u ( t .x ) ) u

~~~
(t .x )u (t , x)

+ G~~
(t . x) — k ( O ) u

~ t (t
~

x) - k’(t)u
1
(x) — (k’*utt)(t.x)

we deduce that / u
~~~

Cs.x) and L. u~~~dxdt are also controllably small, uniformly

on (0,T).

Combining the above information, we select initial data and forcing term so small

that , as long as (4.8) is satisfied,

t 2 2 2 2 2 2(5.25) j  [u ~~(s ,x) + u ( s ,x) + u
~~

Cs ,x) + u
~~~

(s
~

x) + U ( 5 ,X )  + u
~tt

(s.x)

2 2 2
+ u

~~~~
(s .x) + u

~~~~~
(S

~~
x ) + u ( s ,x )ldx

+ c ~: ~~~~ 
+ U + U + U + U

2 
+ u~~ + U

2 )dxdt <

0 < s < ‘F. Since, in return, (5.25) implies (4.8), we conclude with the help of

Theorem 3.1 that the maximal interval of existence of u (t,x) is [0,’-) and that

(5.25) is satisfied for S C  tO ,’-). In particular , (5.1), (5.2) hold . AssertiOn (5.3)

follows from (5.1), (5.2) and (5.4) is a corollary of (5.1)  and (5.3). The proof is

complete.

Remark 5.1. If a ( t )  ‘.4  (1 + e t ) ,  (yE) is easil y shown to be equivalent to the

Cauchy problem

+ ~~~ = a(u
5
)
~~ 

+ 
4 

a (u
~~

)
~~ 

+ g +

u (0 , x) — u0
(x) , u~~

(O . x) = u
1
(x) , u

~~~
(O.x) “ 0(U

0
(X ))

that was studied by J .  Greenberg ( 3 1 .  We note that our Theorem 5.1 applies to this

problem .
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6. Boundary Value Problems. In this section we make a few remarks on initial-boundary

value problems for the heat flow and the viscoelasticity equations . We assume that

the configuration of the body is the interval 10 ,11 and we impose homogeneous boundary

conditions of the Neumann type . For the heat flow equation these boundary conditions

mean that the boundary is thermally insulated , while for the viscoelasticity equation

they mea n that the end points are free. In the place of (HF ) and (VE) we now have

I u~ (t,x) — 5 a (t  — T ) a ( U
~~

(T. x ) )  dT + f (t,x), 0 < t < ‘-, 0 < x < 1
* 

~ u (O ,x) — u
0
(x ), 0 < x  < 1 ,

L u (t , 0) — u (t , l )  = 0, 0 < t < ‘-,

t
(u tt

(t ,x) — o(u (t,x)) +J a ’ ( t = T ) o(u ~~( r i x ) ) ~~d T + g ( t . x ) . 0 <  t <  ‘- , 0<  x ~~l
I 0

~~~ u (0,x)  u0
( x ) ,  ut (0

~
x) — u1

( x) ,  0 < x < 1

u (t .O) — u5(t , 1) — 0 , 0 < t < .

The proper replacements of assumptions (f), (g), Coo) and Cu 1
) are

(f)  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I L2([0,’-)~ L
2(O,l))

(g) ~~~~ I L1([ O ,’-); ~~~~~~~~~~~~~~~~~~~~ C L2 ( [0,’-) ; L2 (O, 1))

2( u ,u ~~ C L (0, 1)
• * Ox Oxx Oxxx

00 c

L 
u~~(0) — u~~~(l) — 0

* ( 
Ul~

U1x~
Olxx I L~ (O l)

Cu
1
)

~ 
u1

(O) — u 1
(l)  — 0

* *For problem s (NP ) and (yE ) propositions analogous to Theorems 4.1  and 5 • 1 hold .

namely,

T h orem 6.1. Let ( a ) ,  
~~~~~ 

( f )  and (u
s

) be satisfied. If the L2((0.—)s L210,1)

norms of f ,  
~~~~~ ~~~~

‘ 
~~~

‘ f’~~~~~’ 
~~~~~~~ ~~~~~ ~~~~~ 

and the L.2 (R) norms of ~~~~

u~~5
, ~~~~~ are sufficiently small, then there is a unique globa l solution
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~~~~~~~~~~~~~1

2 *
u(t ,x) C C ( [0 ,’-) ~ [0,1]) of (HF) and

(6.1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
I L ([O,’-) L

2
(0 fl)

2 2(6.2) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

C L ( [0 ,0w) ; 1. (0,1)) ,

(6.3) u~
(t . x) .u (t

~
x ) . utt C t .x ) . u t (t .x)

~~
U (t . x) + 0, t -~~~~~, unif. on (0,1)

* * * 1 2Theorem 6.2. Let (a), Cay). (g) , Cu0) and (u
1
) be satisfied. If the L ((0,’-); L CR))

norms of g, 
~~~ 

the L2 C ( 0 ,’-); L2 (R)) norms of g ,  g~~, ~~~ 
and the L2(R) norms

of u , , u , u • u , u are sufficiently small, then there is a unique
— Ox Oxx Oxxx 1 lx lxx

2 *global solution u(t,x) C C ((0,’-) x [0,1]) of (yE) and

(6 .4)  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

C L ((0,’) ;  L
2(0,l))

(6.5) 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

E L2((O ,°’); L
2(0,l))

(6.6) ut(t~
x),u (t.x) ,u

~~
(t.x).u

~~
(t ,x),u ( t ,x) -* 0, t -

~ , unif. on (0,1)

The proofs of Theorems 6.1 and 6.2 are identical to the proofs of Theorems 4.1

and 5.1, respectively. Indeed, virtually all equations of Sections 3— 5 are valid also

for the Neumann boundary value problem , provided that integration with respect to x

over ( —o. , )  be replaced by integration over (0,1). In particular the crucial

estimates (3.6)—(3.10) , (4.9), (4.12). (4.13), (4.21), (4.22). (5.5), (5.8), (5.9),

(5.17), (5.18) are valid. The reason is that the assumed Neumann boundary conditions

annihilate the boundary contribution when, in the derivation of the estimates, we

integrate by parts with respect to x.

The same observation holds if we replace the Neumann by Dirichlet boundary conditions,

(6.7) u(t,0) u (t,l) = 0 , 0 < t <

provided we impose on the forcing term s the condition

(6.8) f(t,0) f(t,1) — 0, 0 < t <

(6.9) g(t,O) — q (t,l) — 0, 0 < t < .

* *The reason here is that (6.7), (6.8), (6.9) and the equations in (HP ) , (yE) imply

(6.10) a (u 5
) (t , O) — a(u ) (t,1) 0, 0 < t < =
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so that boundary contributions are again annihilated when, in the derivation of the

• -estimates, we integrate by parts with respect to x. We also note that for the

Dirichlet boundary-initial value versions of (HF) and CVE) we can also conclude that

u(t,x) - 0 ,  uniformly for x e [0 , 1 1.  as t -
~ . If one imposes boundary conditions

(6.7)  but withou t (6 .8)  and (6.9) the problem can be solved but the estimates need

certain modifications that we shall not discuss here.

Finally, we remark that MacCamy (7), [a] studies the initial-boundary value

problems for (HP ) and (yE) only for the case of Dirichlet boundary conditions, and

that his assumptions on the boundary values of the data. see assumptions Cu 0) .  (f 3 )

of [7] and (U2), (F4
) of (8], are different and more restrictive than ours.

—3 6-
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7. Two—Dimensional Heat Plow with Memopy. In this section we outline the applicability

of the energy method to the initial value problem (compare with (HF)):

u

~~

(t . x1 ,x 2
) + f a (t  — T ) A U C T ,x 1 ,x 2

) d T = f ( t , x 1
,x 2

) 

2
I C 0 < t < = , x = ( x

1
,x 2

) e P ) ,

(7 . 1)  ‘~ u ( O , x1
,x

2
) — u 0 (x

1.x 2
) (x C

L 
AU _ r L 1~ /2 ~~~2 u ~ + _ ~_ I~(/~2 + u 2 

U
(~~~~~1 L x1 x2 x1j ~x 2 L ~ x

1 
x
2 

x
2jj

We assume that the function ~ : -‘~~~~ satisfies

~ e and ~~(0) > ~

The problem (7. 1) represents a mathematical model for heat flow in an unbounded two-

dimensional body of material with memory.

Proc eed ing as in Section 2 we differentiate (7.1) with respect to t, we define

the resolvent kernel k of a ’ by equatio n ( k)  (we assume for the moment that a

satisfies (a
N
), and that f is smooth), and we apply the procedure of Section 2 to

arrive at the following equivalent form of (7.1) (compare with (1.1))

1utt (t
~ + 

~~ f k (t — T ) u  (r ,x)dt = —Au (t,x) + $ ( t ,x ) , 0 < t < , x I F
2

(7.2)~ u(O,x) = u0 (x ) ,  ut (O , x) = u 1 (x) = f(O,x), x l

— f t (t .x) + k {0 ) f ( t , x) + / k ’( t  — r)f(t,x)di, 0 < t < , x e

We shall use (7.2) to obtain global results for (7.1) in a manner analogous to the

way (1.1) is used in the proof of Theorem 4.1. Since (7 .1) and (7.2) have two space

dimensions, the energy method requires that we obtain estimates of various partial

derivatives of u up to order four in L ((0,’-); L2(P2)) and in L2(10,’); L2(F
2) )

(rather than up to order three for (HP) in one. space dimension). This means that for

technical reasons the kernel k and the function • in ( 7 . 2 )  have to be correspondingly

smoother, in order to permit the additiona l differentiations of ( 7 . 2 ) . To be precise

we replace assumptions (a
8) regarding the kernel a in (7.1) by (compare with Section 2):

_____ - -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - • ~~~~
- --- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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(I)  a I C
4

10, ’) ,  a~~~~(t )  are bounded on (0, ’-) for J — 0 ,1, 2, 3 ,4

J (ii) a(O) — 1. a (0) < 0

• (aN
) 

~ ‘ ( )  1( ii i)  t 3 a m Ct )  C L (0, ’-), j = 0,1 ,2 ,3 ,4 ,  m — 0,1, 2, 3 , 4

L (iv) Re ~ ( i f l )  > 0, r~ C P .

One then easily has the following strengthening of Lemma 2. 1.

Lesma 7.1. Let the assumptions (aH
) be satisfied and let k(t) be the resolvent kernel

of a’(t). Then H

(i) k ( t )  C C3(0,°); k(t). k’(t), k”(t), k ” ( t )  are bounded on (0.’-).

(ii) k(t) = I + K(t); k= = & ( 0 ) ’ K
(m) (~ ) C L1(0,°’), m — 0, 1,2, 3.

(iii) The inequality (2.6)8 
holds for some a ~ 0 and for every v C L 2 (O, T ) .

With the aid of Lemma 7.1 C i ) ,  (ii) one readily verifies that if f in (7.1)

satisfies the assumptions

~~ ~~~~~~ ~~~~~~~~~ - ‘~ x .x  ~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~ ttx . ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ x ~~~~~~~~~~~~ .x e L2([0,’-);L2(F)),

3 3 3.) 3 3 i j  1 ) t

i,j,i l , 2 ,

then the function • in (7.2) has the property

(1~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C L2UO,’.’); F

2), i,j — 1,2
3 1 )  ~

(compare with Cf) , (~ ) in Section 1).

Concerning the initial datum u
0 

we assume

- 2 2  - .Cu ) u ,u ,u ,u C L (F ) ,  i,j,t,m — 1, 2
0 Ox. Ox.x . Ox .x .x Ox x  x x

3 1 )  i~ j t i j i m
Our global result for (7.1), analogous to Theorem 4.1 for (HF) is:

Theorem 7.1. Let the assumptions (~uP) , (a8
), ‘~~~ ‘ be satisfied. If the

L2((0,°’); L
2(F)) norms of f and its partial derivatives in ( f )  and the L 2 (P 2 )

norms of the partial derivatives of u
0 

in Cu 0) are sufficiently small, then there is

a unique global solution u(t,x) C C2((O,=) x F
2
) of (7.1) and

[ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 2

)
L

utttt ttt .utta .uth .u 
~~~~ 

I L ((0,’-); 1. (P ) ) ,  i,j,&,m — 1.2
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f
2 2

1_ ’~ttx x ’°tx x x ’° x x x  C L ( ( 0 ,’-); L2 (R ) ) ,  i ,j , t ,m — 1,2

fu t (t . ’) . utt (t. ’)
~

utx (t . ’) .u x (t. ’) . uttt (t.
~~~#u tt,c ( t . ) .

(7. 5)
Ct , ’) 0, as t — , in L2(F2), i , j , & — 1, 2

‘3 i j i

( 
ut (t .x ) .u (t . x ) . u

~t (t .x ) ,u
~~~~

(t .x ) , u  
~ 

(t , x )  -‘ 0. as t -‘‘-.
(7.6)

I 2L uniformly for x C F , i ,3  — 1, 2

The proof of Theorem 7.1 is completely analogous to that of Theorem 4.1, although

more complicated techn ically, and we confine our discussion to a few remarks. The

existence of a uni que local solution of the equivalent problem (7.2) is handled as in

Section 3 by a f ixed point argument. In analogy with Section 3, eq. (a)* , we replace

tempor arily (
~~~) by the stronger assumption

~ C ~~~~~~ ~~(w) > p
0, w~ ’( w) + ~~(w) > p ,  p

0 
> 0 , W I

which guarantees that the operator A is uniformly elliptic. In place of the set of

functions X(N ,T)  of Section 3 we now define for any positive N and T the set

• X(I’I ,T) of functions u ( t ,x) I C2 ( [O ,T) x F2) with initial values u(0,x) —

u
~
(O.x) = u

1
(x) = f ( 0 ,x ) ,  X C  F

2
, Such that the partial derivatives in (7.3) are in

L ((0,TJ; L2(F2)) and which satisfy (comp are with (3.3) for n — 1)

~~~~~~ ~: L (u~~ t . x + u
~~
(t.x) + u

~~~~
(t . x) + u

~ ttt (t . x) + 

~ 
(u~~~t,x~

+ u~~~~(t ,x)  + u
~~~~

(t.x) + u
~~~~~~

(t . x)) + 
i,~~—i 

~~~~~~~~~~~ + u~~~~~(t,x)

+ u
~~x~x~~

(t
~x) 1 + 

i,j~~—l 
(u
~~x~x~

(t.x) + u~~~ x~x~~
(t . x))

+ ~ u2 (tax)) dx1dx < N 2
i, j , t ,m—l X

i
X
j
X
t
X
m 

2

Note that X( N , T) is noneapty for N sufficiently large. Observe also that if

u C X (M ,T),  then by Sobolev’s inequality (see e.g. [1, p. 32))
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(7.8) sup {Iu t (t ,x) I . ju (t,x) I, Iu tt (t.x) I’ ju t C t ,x )  I ’
[0 ,T ]xP 2 X i

Iu,~ ,~ 
(t , x ) j }  < N  ( i ,j  — 1,2)

i i

(compare with (3.4)). The fixed point argument, quite analogous to that of Theorem 3.1,

is now applied to the map S : X (M .T) -‘ C2(I0 ,T] F2) which carries a function

V C X(M,T) into the solution u(t,x) of the linear hyperbolic initial value problem

(compare with (3.5))

o (t,x) + k(O)u (t,x) — ~(,42 + v2 Ilu + utt t ( x
1 x2 ,~ x1x1 x2x2

~~~~~~~~ + v 2 )

+ 
1 2 v2 u +~~~ , v u  + v 2 u

(7.9) + ~~ 

[ x1 x1x1 x 1 x 2 x1x2 x 2 x2x21

+ I ( t , x) — (k ’ *v~
) (t , x) (0 < t < , x C ~~~

2
)

u(0,x) = u0
(x), u

~
(O ,x) = u

1
(x) f(0,x) (xl F2)

One arrives easily at analogues of Theorems 3.1, 3.2 for the existence, uniqueness,

and regularity of the (generally) local solution u (t,x) C C
2

( [0 , T
0

) x F2) of the

Cauchy problem (7 .2)  on a maximal interval (0 ,T0
) ,  T0 

< = , such that for TI 1O,T0)

I t , 
‘ tt ’ tx ’ ,u t t t .u~~~ , 0 ,u 

~~~~~~~~~~~~~~~~~~
•1 3. 1 1 )  1 1 )  1 3 1 1

(7.10) 
= 2 ‘

1,
Uttax~~ut x  ,u C L ( [0 ,T] ; 1.. (]R ’ ) )  ,

1 )  1 ) 1  i j i m

for i , j, t ,m — 1,2 (compare with 3 . 2 ) ;  moreover, if T
0 

< , then the integral in

• (7.7) • — as t -‘ T0 . We omit the details.

• To complete the proof of Theorem 7.1 one proceeds to obtain energy estimates for

derivatives of u as in Section 4 (however, to obtain the L ([0,”); L
2(F2) and the

L2 ([ O, ”~) ;  L 2 (F 2
) )  estimates of the fourth derivatives of u in (7.3), and (7.4),

it is now necessary to differentiate (7.2) up io three times, as opposed to up to twice)

Similar to the proof of Theorem 4.1 we have to restrict the range of u~ (t,x)
1

and u (t ,x )  to the set on which A is elliptic in order that (7.2) be a well posed

problem. We choose a constant c0 > 0 such tha t
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(7.11) p (w) > p0. w’p’ (w) + ip (w) > p0
, p

0 
> 0 , W I  (O,c0)

We define W (w ) — ~~~ ( F ) d ~ and we note that

• (7.12) W(w) > 4 p0w2, W I (0 ,c0
)

As in Section 4 the aim is to show that there exists a number u, ~ ~ c0, such tha t

if the local solution u(t.x) of (7.2) satisfies (compare with (4.8) )

(7. 13) sup {Iu (t.x)~ ,Iu~ (t.x)j,Iu 
~ 
(t,x)~ } <~~~~~, ( i ,j  — 1,2)

[O ,T)xF2 i i i j

then certain functionals of the solution u are control lab ly small.

To obtain the first set of estimates we multiply (7.2) by u
~ 

and integrate each

term over t O , s] x p2, 0 < s < T < T
0
. We make use of 

~
2•6

~~~~ 

in Lenasa 7.1 ( i i i ) ,  an

integration by parts (compare with ( 4 . 9 ) ) ,  and we obtain

(7. 14) 4 1 f u~~(s ,x)dx 1dx2 + J °’ 1’- w(h~~~ s , x~ + 02 (s, x) )dx 1dx2

+ 

~ ~~ ~: 
u~~(t, x)d x 1dx2dt < 4 ! f u~~(0,x)dx 1dx 2

+ ç r W( ~~~~~( O,x )  + u
2 (0 ,x) J dx 1dx 2 + 

~ f •(t .x )u t (t . x)dx 1dx 2dt

ay an argument similar to that following (4.9) one obtains that

f f u~~(s, x)dx 1dx 2
, £: ~~ u2 (s ,x) d x 1dx 2 Ci — 1,2). 

~~ r u~ (t, x)dx 1dx 2dt

are controllebly small , uniformly on (O ,T ) .

We omit the deriva tion of the remaining, technically involved , energy estimates

which follow the pattern of those in Section 4. We only remark that for most of these

calculations it is convenient to write Au in the form

______ 
~~~~~~~ )

Au — + ,c
2
) X

I
X
1 
+ u )  - 

/

~

2

Xl 

2 
( 2 

+ 2 u u u  + u~~u55 1
U~~~~+ U
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Once we have obtained the L’- ( ( O ,T) ; L2 (F 2 ) )  and L2 ( ( O ,T) ; L2 (P 2 ) )  estimates

of derivatives of u up to order four , we can select initial data and forcing ter m so

~sma11” that, for as long as (7.13) is satisfied, one has (compare with (4 .30))

— ‘ -  2, r 2 2 2 2 r 2 2 2 2
/ j tU + u  + u  + u  + 

~ 
Cu + u  + u  + u  )

-‘- -‘- 
t tt ttt tttt i—i X

i 
tx

i 
ttx i tttxi

2 2
+ ~ Cu 2 

+ u
2 

+ u
2 

) + ~ Cu 2 
+

i,j—l 
X
i
X
~ 

tX~~X~ ttX~~X~ i , j , t l ~~
x
~
x
t 

tX~~ X~~ X~~

2 s = —

+ 

i,j, L, m l  
~2 

~~~~
}dx

1
dx
2 

+ 
~ 1,, 1,, (u~ + u~~ + ~~~~ 

+

2 2
v 2 2 2 r 2 2 2

+ L Cu + u  + u  ) +  L (u + u  + u  )
i—l ~~~~ 

ttX~ tttX~ i ,j—l  XjXj 
te~ X~ ttX

1
X~

2 2 2 2
+ L Cu + i ~ ) +  L u }dx dx dt <~~x x .x tx.x .x . x x X x  1 2

i , j , L—l i ~ 1 i 
~ 

I i,j,t ,m—l i j I m

and one concludes the proof of Theorem 7.1 exactly as that of Theorem 4.1.
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20. ABSTRACT (cont’d.)

t
(u (t ,x) = f a ( t  — -r)a(u ( r ,x ) )  dr + f (t , x) (0 < t < ~~, x e P)

(HF ) 0

L u ( 0 ,x) = u0
(x ) (x e p)

1u tt
(t
~

x) = a(u (t,x)) + f a ’(t  — T)a (u (T ,x ) )
~

dr + g(t ,x)

(yE) (0 < t < ~~, x e P)

L u (0 ,x) = u0
(x ) ,  u

~
(0 ,x) = u1

(x) (xE

with suitably “ small” data u0, u1, f ,  g; (HF ) and (yE ) are mathematical models
for nonlinear one-dimensional heat flow in a material with “memory” and non-
linear one—d imensional viscoelastic motion, respectively. Here a : [0,°°) + J~~,

a P -
~ P f ,g (0 ,a) X P -

~~ F, u0,u~ P + P are given, sufficiently -
~~~~~

smooth functions; the subscripts x or t denote partial derivatives . If 4
a(0) = 1 formal differentiation with respect to t reduces (HF ) to (yE ) with
g ( t , x) = f

~
(t

~
x) and u1(x) = f ( 0 ,x ) .  But , since (HF) and (yE ) have different

physical origins , the corresponding natural assumptions concerning a ( - ~) are
drastically d i f f erent and , therefore, the two problems are studied separately. - 

-

A previous study of (HF ) arid (yE) rests on the concept of Riesnann invariant
and is restricted to one space dimension. The energy method is simpler in - ;

principle and yields more widely applicable results.

‘4

_ _ _ _ _ _ _  
- -


